On Some Definite Integrals Involving the Hurwitz Zeta Function

نویسندگان

  • OLIVIER ESPINOSA
  • VICTOR H. MOLL
چکیده

We establish a series of integral formulae involving the Hurwitz zeta function. Applications are given to integrals of Bernoulli polynomials, log Γ(q) and log sin(q).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Some Integrals Involving the Hurwitz Zeta

We establish a series of integral formulae involving the Hurwitz zeta function. Applications are given to integrals of Bernoulli polynomials, log Γ(q) and log sin(q).

متن کامل

The Evaluation of Tornheim Double Sums

We provide an explicit formula for the Tornheim double series in terms of integrals involving the Hurwitz zeta function. We also study the limit when the parameters of the Tornheim sum become natural numbers, and show that in that case it can be expressed in terms of definite integrals of triple products of Bernoulli polynomials and the Bernoulli function Ak(q) := kζ(1− k, q).

متن کامل

On Some Integrals Involving the Hurwitz Zeta Function: Part 2

Abstract. We establish a series of indefinite integral formulae involving the Hurwitz zeta function and other elementary and special functions related to it, such as the Bernoulli polynomials, ln sin(πq), ln Γ(q) and the polygamma functions. Many of the results are most conveniently formulated in terms of a family of functions Ak(q) := kζ (1 − k, q), k ∈ N, and a family of polygamma functions o...

متن کامل

On Some Integrals Involving the Hurwitz Zeta Function: Part 2

We establish a series of indefinite integral formulae involving the Hurwitz zeta function and other elementary and special functions related to it, such as the Bernoulli polynomials, ln sin(πq), ln (q) and the polygamma functions. Many of the results are most conveniently formulated in terms of a family of functions Ak (q) := kζ ′(1−k, q), k ∈ N, and a family of polygamma functions of negative ...

متن کامل

The Neutrix Limit of the Hurwitz Zeta Function and Its Application

In this paper, the neutrix limit is used to extend the definition of the Hurwitz zeta function ζ(α, x) and its partial derivatives to the whole complex plane except for non-positive integers α, in particular, the values of ζ(1, x) is obtained. This definition is equivalent to the Hermite’s integral of ζ(α, x) as α 6= 1, 0,−1, . . .. Moreover, some properties of ζ(1, x) are established and we fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008